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ABSTRACT 

The present paper   surveys important results in 

the theory of network flows which are not included in 

the book "Flows in Networks" by Ford and Fulkerson. 

The survey is divided into three areas:   1.   Shortest 

paths and minimal cost flows, 2.    Multi-terminal 

flows, 3.   Multi-commodity flows. 
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RECENT ADVANCES IN NETWORK FLOWS 

T. C Hu 

This report presents a survey of important papers on network flows, many of 

which appeared afterthe publication of the book "Flows in Networks "by Ford and 

Fulkerson [5].   Still, itwillbean extensionratherthanaduplicationofthe survey 

paperby Fulkerson [ 7]. The areas considered in this survey are: 1.   Shortest paths 

and minimal cost flows, 2. Multi-terminal flows, 3. Multi-commodity flows.   Unless 

stated explicitely to the contrary, it will be assumed that the network has   n nodes 

and    m     arcs which are either directed or undirected.   Associated with every 

arc, there is an aj-c capacity b,. which indicates the maximum amount of flow 

that can pass through the arc that leads from node N   to node N .   If x., is the arc 

flow, then 0<x   <b   .   A cost c^ may also be associated with this arc, being 

the cost of shipping one unit of flow along the arc; thus £ c    x    is the total 

cost of the flow. 

1.    Shortest paths and minimal cost flows:   The minimal cost flow 

problem is to 

min   Zc^x.. 
ij   iJ 

subject to  Z x., - 2 x..=/o   if j ^ s, t 
i   1J      k   Jk   ' 

-v if j = s 

0 if j ^s 

v   if j = t 

and    0 < x   <b 
-    ij- iJ 
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where N    Is the source and N.  Is the sink.  The value v Is the required amount of How 
s t 

from N    to   N .    By netting v = 1, the problem can be viewed as a shortest path 
S L 

problem with the   c     interpreted as distances along arcs 

Basically, there are two types of algorithms for the construction of 

shortest paths; 1) the tree-building algorithm which finds the shortest paths 

from   N    to all the other nodes, and 2) the matrix algorithm which finds 
S 

shortest oaths between each pair of nodes. 

1) When all c     are nonnegative, Dantzig [3] proposed the following 

algorithm for the construction of a tree which contains arcs forming shortest 

paths from N   to all the other nodes.  At the start, no arcs of the network 

belong to the tree, and arcs of the tree are added one at a time by the 

following rule.   Let N   be the set of nodes connected by the tree, and L    the 

shortest distance from N   to N .   Then let 
s i 

min  min (L,. + c^)  = Lsr + crp = L k=i+l, i+2,  .. ., n (1) 

The arc  rp   is added to the tree and N   receives the label   L    .   The algorithm 
P sp " 

starts with N    as the single node of the tree aad ends when all nodes are connected 

bythetree.   When there are   q   nodes in the tree, we need q(n-q)   additions and 

comparisons to add one node to the tree; the total number of additions and comparisons 

is therefore 

,(2n-l)(n+2)n     ., 
n-l r* r* t—     if  n   is even 
2:   q( n - q) = 
q=l 

zaMilazU     if n is odd 
24 

The modification by Karp [17] is to indicate the current shortest distances 

from N     to every node on that node whether or not it belongs to the tree. 

This label is called a permanent label if the node belongs to the tree and a 

temporary label if the node does not belong to the tree.   The temporary 

-2- ^75i 
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label Is calculated just like (1) and the temporary label with minimum distance 

becomes a permanent label.   Each time a node   N    gets a permanent label, we 

compare each temporary label   L k with  L     +c L»   and the minimum of the two 

becomes the temporary label ofthat node.   Thus at most n additions are needed 

in computing  L     + c , (k = 1 ... n), at most n comparisons are needed to fix 

all temporary labels after a permanent label is added, and at most another n 

comparisons among the temporary labels are needed to decide which one will become 

permanent.  Therefore, no more than   3n operations are Involved in getting a 

2 
permanent label, and a maximum of in    operation are needed in the algorithm.   This 

bound is explicitly pointed out by Karp [ 17] and the algorithm was adopted by Martin (20], 

2) When the   c     are allowed to be negative without leading to negative 

cycles then usually a matrix-type of algoritnm is used to find the shortest 

paths  between all pairs of nodes.   We shall not go through the long history 

of how the number of operations can be reduced from n   log  (n-1) to n    but 

only state the most recent result.    (The interested reader is refered to the 

papers [4] [12] [22] ). 

Given the   nXn  distance matrix whose entries c    denote the distances 

of arcs from   N. to N..   with   c.. = 0  for all i = 1, . , ., n, and c,, = « if i j' u '    ' ij 

there is no arc leading from   N    to   N   .     We shall use the following 

operation to change   c, 

cik:   =mln(c.k> ^ + c.k)  , (2) 

where   :  =   means to be replaced by.   The operation  (2) is to be performed 

for all    i and k   with the value of  j   first set at 1.   Then (2) is performed 

If the sum of costs of arcs in a cycle is negative, then the cycle is called a 
negative cycle. 

-(1753 -3- 
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again for all   I and k  with  J   set at 2, etc.   The operation  (2)   is 

completed after   J = n.   At that time, all entries in the matrix represent 

2 
the shortest distances.   The total number of additions is   n(n-l)      and so is 

the total number of comparisons. 

To keep track of what are the intermediate nodes in the shortest paths, 

another  nXn matrix is built up the entries of which are calculated along with the 

calculations of (2).  At the start, all entries in the (i, k) positions 

are set equal to   k.   Then these entries are changed according to the 

following rule 

is set equal to j if  c.  > c.   + c., , 
(i,  k) / lk      1J       jk (3) 

remains unchanged if c,.   < c,, + c,,   • 
^ ik -   ij       jk 

These indices then indicate the intermediate nodes in each shortest 

path.   This method is proposed by {4] [22] [27]   and the number of operations 

is minimal for a completely connected network with arbitarily defined 

distances.    For a large network, where not every pair of nodes is connected 

by an arc, Hu [13j proposed a decomposition algorithm to save the amount of 

computation and the storage requirements. 

There are two algorithms for solving the minimum cost flow 

problem, both using a shortest path algorithm as subalgorithm.    We shall first 

discuss the paper by Busacker and Gowen [1].   Their algorithm consists of 

solving a sequence of shortest path problems where the distances along the arcs are 

functions ofthe existing flow in the network.   At the start, the arc fiows x,, =0. 
ij 
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As before the   b     are the arc capacities,the cost   c     are Interpreted as 

distances along arcs, and the flow is to be sent along the shortest path 

from   N   to N .   Based on the currect flow in the network, new modified 
s        t 

cost   c*   (or modified distances) are defined as follows: 
ii 

IUULKU JJJiMWMPPL . 

■ 

f  * c    = c 
ij       ij lixii<bii 
* 

Cii =00 il % - \ 

* 
c,. = -c.. 

^ U         ji 
Ifx.^U 

(4) 

We then find a shortest path using  c     as distances, and ship the 

maximum amount possible along the new shortest p 3th.   This is repeated until the 

total amount shipped from N  to N  is v.  This can be considered as a dual algorithm 

sincethe feasible solution is obtained at the end of the computation. 

A primal algorithm suggested by Klein [18]  is as follows.   First find 

a flow of  v  units from N   to N   disregarding the costs.   This can be done, for 

example by us mg the labeling method for finding the maximal flow.   Then the 

modified costs (or modified distances) are defined as in (4).   Using these   c 

as distances, the existence of negative cycles is checked.   Ifthere does not exist 

any negative cycle, then the current flow is optimum;  if there exists a 

negative cycle, acylceof flow is superimposed on it, the c    are defined 

and the existence of negative cycles is checked again.   The validity of the two 

algorithms is established by the theorem:   A flow is optimumifandonly if thereareno 

negative cycles.   This theorem can be considered as the central theorem in 

minimal cost flow.    It is stated explicitly in Busacker and Saaty [ 2 ] and also 

implicitly in [16] [21]. 

#753 -5- 
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2. Multl-termlnal flows;   In tho problem of multi-terminal flows, 

every pair of nodes can be considered as the source and the sink while all 

other nodes are regular nodes where the flow is conserved.   This is different 

from the multi-commodity flow problem where flows of many kinds can exist 

simultaneously In the network.   Many results on the multi-terminal flows are 

given In Gomory and Hu [8 ] [ 9], some of which are also described in the 4th 

chapter of the book by Ford and Fulkerson [ 5]. 

In the paper by Gomory and Hu [8], it was shown that for an 

undirected network  I.e.   b    = b  ,   n(n-l)/2  maximal flow values f,. can be 

found by solving     n-1  maximum flow problems.   If one is interested in 

finding the maximum flow values In a subset containing    p    nodes, 

then    p - 1    flow computations are sufficient to determine the 

p(p - 1)/2  maximum flow values.     This extension is also obtained by Gomory and 

Hu [ 9]   and is contained in the lecture notes of Hu |15].      Gupta [11] showed that 

the condition   b    = b     can be weakened by requiring the network to be 

pseudosynmetric.  A networkis pseudosymmetrtcif f  ,   the number of arcs which 
i) 

leave every node is always equal to f..,   the number of arcs which arrive at that node. 

If such a condition holds in a network, the network can be considered to be s superposition 

of directed cycles. This then immediately implies   f.. = f.,.   An unsolved 
i)      Ji 

problem of the moment is that whether the condition   tSi - i..   would imply the 
ij       U 

network is pseudosymmetric.   This p-oblem is proposed by A. J. Hoffman. 

3. Multi-commodity flows;   In the multi-commodity flow problem, 

there are many kinds of flows each having its own source and own sink.   All the 

-6- ^763 
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flows share the same arc capacity,  I.e.   the sum of all commodity arc 

flows cannot exceed   b   .    Two questions are usually asked;    1) to 

maximize the total sum of different flows,   (this is called the maximum 

multi-commodity flow problem);     2) to prescribe lower bounds on each 

of the flow values and ask if it is feasible.     (This is called the 

feasibility problem. ) 

1) For the special case of two-commodity flows in an undirected network, Hu 

[ 14] has proved a theoi-em analogous to the Max Flow Min Cut theorem for one commodity 

flow and presented a labeling technique for constructing the maximum flows. 

Rothschild and Whinston [23] have replaced the condition of  b    = b     by 
ij        ji 

requiring the network to be pseudosymmotric. 

For the general maximum multi-commodity flow problem. Ford and 

Fulkerson [ 6 ] first formulated it as a linear programming problem with a constraints - 

matrix A of m+1 rows and many more columns.  The matrix A is the incidence 

matrix of arcs-versus-chains.   A column generating technique was developed which 

enables one to use the revised simplex method on a   (m + 1) X (m + 2) 

matrix. The algorithm starts with using any selection of m columns as the basis, 

and the revised simplex method then produces the prices w of each row.   Then, the 

shortest path between one pair of nodes for some commodltvis found by using the prices 

on arcs as distances.   Thl.5 shortest path, which is a column in the matrix A is then 

introduced into  the basis.     Newprices are then obtained for this new basisafter 

which the iteration is continued.   The iteration comes to an end when the 

shortest path has a distance of 1 or more.  If the costs  c., are also involved, then 

#753 -7- 
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n    - TT    is used as the distance along an arc, see for example Tomlin [26].   A 

decomposition scheme for the maximization of multi-commodity flows has 

recently been proposed by Sakarovitch [ 24]. 

2)   In the feasibility problem of multi-commodity flows, the approach is 

basically the same^ it can also be formulated as a linear program with a matrix 

A  of  m + 1   rows.   Here the matrix  A is an arcs-versus-network incidence matrix 

where each column represents a feasible network.   A column generating 

technique analogous tothe previous one is used.   The revised simplex method 

will produce the prices and a shortest path for each commodity is then found using 

these prices,   The network is then obtained by superimposition of all shortest paths. 

The associated synthesis problem of multi-commodity flows is much more 

complicated.   Here we are given a set of lower bounds of flow requirements which are 

functions of time. It is required to find a minimum cost network which will meet the 

lower bound requirements in all time periods.   Gomory and Hu [10] proposed 

two algorithms for solving this, both making use of the simplex or dual simplex method 

together with a row generating technique, the latter itself being a linear program. 
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